Differential annotation of tRNA genes with anticodon CAT in bacterial genomes

نویسندگان

  • Francisco J. Silva
  • Eugeni Belda
  • Santiago E. Talens
چکیده

We have developed three strategies to discriminate among the three types of tRNA genes with anticodon CAT (tRNA(Ile), elongator tRNA(Met) and initiator tRNA(fMet)) in bacterial genomes. With these strategies, we have classified the tRNA genes from 234 bacterial and several organellar genomes. These sequences, in an aligned or unaligned format, may be used for the identification and annotation of tRNA (CAT) genes in other genomes. The first strategy is based on the position of the problem sequences in a phenogram (a tree-like network), the second on the minimum average number of differences against the tRNA sequences of the three types and the third on the search for the highest score value against the profiles of the three types of tRNA genes. The species with the maximum number of tRNA(fMet) and tRNA(Met) was Photobacterium profundum, whereas the genome of one Escherichia coli strain presented the maximum number of tRNA(Ile) (CAT) genes. This last tRNA gene and tilS, encoding an RNA-modifying enzyme, are not essential in bacteria. The acquisition of a tRNA(Ile) (TAT) gene by Mycoplasma mobile has led to the loss of both the tRNA(Ile) (CAT) and the tilS genes. The new tRNA has appropriated the function of decoding AUA codons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anticodon-dependent conservation of bacterial tRNA gene sequences.

The residues in tRNA that account for its tertiary fold and for its specific aminoacylation are well understood. In contrast, relatively little is known about the residues in tRNA that dictate its ability to transit the different sites of the ribosome. Yet protein synthesis cannot occur unless tRNA properly engages with the ribosome. This study analyzes tRNA gene sequences from 145 fully sequen...

متن کامل

Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization.

The selection-mutation-drift theory of codon usage plays a major role in the theory of molecular evolution by explaining the co-evolution of codon usage bias and tRNA content in the framework of translation optimization. Because most studies have focused only on codon usage, we analyzed the tRNA gene pool of 102 bacterial species. We show that as minimal generation times get shorter, the genome...

متن کامل

Prediction and verification of mouse tRNA gene families.

BACKGROUND Transfer RNA (tRNA) gene predictions are complicated by challenges such as structural variation, limited sequence conservation and the presence of highly reiterated short interspersed sequences (SINEs) that originally derived from tRNA genes or tRNA-like transcription units. Annotation of "tRNA genes" in sequenced genomes generally have not been accompanied by experimental verificati...

متن کامل

In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs.

In archaeal species, several transfer RNA genes have been reported to contain endogenous introns. Although most of the introns are located at anticodon loop regions between nucleotide positions 37 and 38, a number of introns at noncanonical sites and six cases of tRNA genes containing two introns have also been documented. However, these tRNA genes are often missed by tRNAscan-SE, the software ...

متن کامل

Cloning and nucleotide sequence analysis of transfer RNA genes from Mycoplasma mycoides.

As part of an investigation of the tRNA genes of Mycoplasma mycoides, two HindIII fragments of mycoplasma DNA comprising 0.4 and 2.5 kilobases (kb), respectively, were cloned in pBR322 and their nucleotide sequences determined. Only one tRNA gene was found in the 0.4 kb fragment, the gene for tRNAArg with the anticodon TCT, while the 2.5 kb fragment contained nine different tRNA genes arranged ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006